相比其他学科,医学+AI,是发表学术成果最多的领域。

医学数据的多样性和复杂性(包括文本、图像、基因组数据等),使得传统的数据分析方法难以全面整合和解析。

而大语言模型,特别是多模态模型,可以综合分析不同类型的数据,建立跨模态关联,提供从文本到影像的深度理解。

这篇文章,娜姐用主题检索的方式,总结了近一年来,医学领域大模型的研究进展。主要分为辅助诊断、药物研发、基因组学、医患沟通等方面。

图1 生物医学领域LLMs的发展概览。从左到右,展示了单模态(绿色部分)和多模态(粉色部分)模型随时间的研究进展【1】。

一、LLM在医学细分领域的研究进展:

1 医学影像辅助诊断:

哈佛大学生物医学信息学助理教授余坤兴2024年9月发表在Nature上的成果【2】,他们团队开发了一款临床组织病理学成像评估基础模型(CHIEF,Clinical Histopathology Imaging Evaluation Foundation)。该CHIEF模型能够对源于肺、乳腺、前列腺、结直肠、胃、食道、肾、脑、肝、甲状腺、胰腺、宫颈、子宫、卵巢、睾丸、皮肤、软组织、肾上腺和膀胱等组织的19 种癌症进行诊断,检测准确率接近 94%。

团队正在与业界合作,希望将 CHIEF 模型发展为临床辅助诊断工具,并在准备 FDA 的相关审批工作。

图2 CHIEF 模型概述(来源:Nature,【2】)

美国商业公司Paige研发的病理学基础模型Virchow,能够实现泛癌症检测,在九种常见癌症和七种罕见癌症中,样本级接收者操作特征曲线下面积达到 0.95。此外,在训练数据较少的情况下,Virchow也能够实现与生产中的组织特异性临床级模型相似的性能,并在某些罕见癌症变种上超越它们【3】。

哈佛大学医学院研究团队近期开发了一个用于人类病理学切片鉴定的视觉语言通用 AI 助手——PathChat。该系统通过自我监督学习对来自 100 万多张切片的图像片段进行预训练,能够从活检切片中正确识别疾病,准确率近 90%,超越GPT-4V。

图3 PathChat 的训练和构建过程。(来源:Nature,【4】)

SkinGPT-4,是一个基于多模态大型语言模型的互动皮肤病诊断系统。基于Llama-2-13b-chat大型语言模型,通过52,929 张病理图像及临床概念进行训练。用户可以上传自己的皮肤照片进行诊断。系统自主评估图像,识别皮肤状况的特征和类别,进行深入分析,并提供互动治疗建议【5】。

图4 SkinGPT-4 是一个基于多模态大型语言模型的互动皮肤病诊断系统。(来源:Nature Communications,【5】)

中山大学附属第一医院针对甲状腺结节影像及病理评估的一项实验表明,725 名患者中的 1161 幅甲状腺结节的影像诊断对比,ChatGPT 4.0 和 Bard 显示出显著到几乎完美的内部一致性,与两名高级影像师和一名初级影像师的人机交互策略相当,并超过了仅有一名初级影像师的人机交互策略【6】。

中国学者开发的肺尘病诊断大模型PneumoLLM,开辟了针对数据稀缺的职业病应用LLMs的新范式,通过广泛的实验展示了大模型在诊断尘肺病方面的优越性【7】。

2 药物开发

浙江大学人工智能医学创新研究院开发了LEDAP模型,利用了基于LLM的生物文本特征编码来预测药物-疾病关联、药物-药物相互作用和药物-副作用关联。LEDAP 在与其他流行的 DBA 分析工具相比时展示了其显著的竞争力【8】。

哈佛医学院研究人员开发的TxGNN 模型,在涵盖 17,080 种疾病的疾病机制和 7,957 种药物的作用机制的医学知识图谱上进行训练,旨在解决现有药物的新应用,为治疗选择有限且分子数据稀缺的疾病识别候选药物【9】。

图5 TxGNN:该几何深度学习模型结合了一个庞大而全面的生物知识图谱,以准确预测任何给定疾病-药物对的适应症或禁忌症的可能性,适用于老药新用途的开发。(来源:Nature Medicine【9】)

中国科学技术大学联合微软研究院,开发了 TamGen–一种采用类似 GPT 的化学语言模型的方法,能够实现靶向感知的分子生成和化合物精炼。将 TamGen 集成到药物发现流程中,并识别出 14 种对结核病 ClpP 蛋白酶表现出显著抑制活性的化合物,其中最有效的化合物的半最大抑制浓度(IC50)为 1.9 μM【10】。

理解化学干扰的转录响应对于药物发现至关重要。中科院计算技术研究所联合合作者,开发了PRnet深度生成模型,能够预测从未在大规模和单细胞水平上进行实验干扰的新化学扰动的转录响应(transcriptional response)。PRnet 使基因水平的响应解释和基于基因特征的计算药物筛选成为可能。PRnet 生成了一个大规模的扰动特征整合图谱,涵盖 88 个细胞系、52 种组织和各种化合物库。并成功推荐了 233 种疾病的药物候选者【11】。

化疗和靶向治疗中,药物耐药性是一个关键挑战。佛罗里达大学团队提出的DrugFormer 模型,整合了序列化基因标记和基于基因的知识图谱,以高精度预测单细胞水平的药物耐药性。来自不同癌症类型的全面单细胞数据分析突显了 DrugFormer 在识别耐药细胞和揭示潜在分子机制方面的有效性【12】。

图6 DrugFormer 模型的整体框架。(图源:Advanced science)

3 基因组学

布朗大学团队开发了多模态深度学习模型 EPBDxDNABERT-2。使用包含 690 个 ChIP-seq 实验结果的染色质免疫沉淀测序(ChIP-Seq)数据进行训练, EPBDxDNABERT-2 显著提高了 660 多个 TF-DNA 的预测,揭示了在全基因组关联研究中发现的与疾病相关的非编码变异的机制【13】。

图7 EPBDxDNABERT-2的构建过程。

受大型语言模型的启发,北京理工大学邵斌等开发了一种用于基因组的长上下文生成模型megaDNA。模型的基础能力,包括预测必需基因、遗传变异效应、调控元件活性以及未注释序列的分类。此外,它能够生成长度达到 96 K 碱基对的 de novo 序列,这些序列包含潜在的调控元件和具有噬菌体相关功能的注释蛋白【14】。该生成基因组模型代表了全功能基因组从零开始设计的第一步。

Memorial Sloan Kettering癌症中心报告了一种基于遗传,而非组织病理学数据训练的人工智能算法的构建,该算法能够准确分类浸润性乳腺癌(ILCs)并揭示 CDH1 失活机制,为开发应用于全切片图像的诊断人工智能模型提供了正交真实数据利用的基础。揭示了与强基因型-表型相关性相关的遗传改变可用于开发应用于病理学的人工智能系统,从而促进癌症诊断和生物学发现【15】。

肽在许多生物活动中发挥着关键作用,是药物设计中有前景的候选者。然而,准确预测蛋白质-肽结合亲和力仍是一项挑战。针对这一问题,北京工业大学团队开发了一种基于卷积神经网络和多头注意力的预测模型 PepPAP,该模型仅依赖于序列特征。PepPAP可用于广泛基因组蛋白-肽结合亲和力预测,并有潜力为基于肽的药物设计提供有价值的见解【16】。

4 其他

对于肌萎缩侧索硬化症(ALS)患者来说,眼动追踪技术使用户能够利用键盘,输入文本以进行语音输出和电子消息传递。但是效率仍远低于语言交流。谷歌及合作者团队利用微调的LLMs和对话上下文,开发了一种名为 SpeakFaster 的文本输入用户界面,将高度缩写的英语文本扩展为所需的完整短语,具有非常高的准确性。与传统基线相比,文本输入速度显著提高(29-60%)并节省了运动动作【17】。

图8 SpeakFaster 用户界面。(来源:Nature Communications 【17】)

医患沟通

2024年7月,中国医学科学院基础医学研究所龙尔平团队与耶鲁大学陈庆宇合作,基于35418例真实导诊对话信息形成的知识库作为训练数据,构建了SSPEC导诊大模型【18】。相比人类导诊,SSPEC在事实性、安全性、共情能力均展现出明显优势,在真实应用场景中,降低了11.2%的重复沟通和5.4%的医患冲突比例。

二、LLM在医疗领域的优势总结

  • LLM 在医学中带来了更准确的诊断和预测,促进了早期疾病检测和个性化治疗计划的制定。

  • 为医生提供实时决策支持和更新的医学知识,从而优化临床决策过程。

  • 个性化治疗方案并促进药物开发,为患者提供更精确的治疗选择和用药选择。

  • LLM有潜力增强患者管理和医疗流程,提高医疗效率和患者护理质量。

  • LLM可以支持医学教育和医疗知识的传播,促进医学生和从业者的持续学习和改进。

三、挑战:

在生物医学研究中整合LLM带来了机遇,同时也提出了重要的伦理考虑。包括:

潜在的算法偏见;

在人工智能辅助的临床决策中的知情同意;

医疗责任和法律责任问题;

对数据所有权和隐私的担忧。

应对这些挑战需要人工智能研究人员、医疗专业人员、伦理学家和政策制定者之间的合作,以制定稳健的指导方针和监管框架。

总的来说,LLM正成为医学创新的新引擎。ChatGPT等通用模型已展现出卓越的推理和分析洞察能力,随着垂直领域模型的不断深化,未来智能助手将切实融入医生的日常实践,为诊疗质量和效率的提升提供有力支撑。

如果觉得有用,欢迎在看、转发和点赞!娜姐继续输出有用的AI辅助科研写作、绘图相关技巧和知识。

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

Logo

NVIDIA官方入驻,分享最新的官方资源以及活动/会议信息,精选收录AI相关技术内容,欢迎大家加入社区并参与讨论。

更多推荐